If it's not what You are looking for type in the equation solver your own equation and let us solve it.
37x^2+73x-2=0
a = 37; b = 73; c = -2;
Δ = b2-4ac
Δ = 732-4·37·(-2)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-75}{2*37}=\frac{-148}{74} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+75}{2*37}=\frac{2}{74} =1/37 $
| n^2-3n-405=0 | | 6x+2=85 | | 9+d=16(+1) | | x+8=x+2x-22 | | 3(x-7)=3(x-8) | | 30-3x=40-7x | | 7(-n-3)=-10(n+3) | | 6x-40=25 | | 8(-11a+1)=-7(1+12a)+11a | | 4t=3t-9 | | 2.5x=3.7 | | 3^(x-1)=12 | | x/3=27*3 | | 0=4x^2+x+3 | | 1.8y-10.2=-1.9+0.9 | | 2x+60=x+40 | | x^2-5x+3=2x+13 | | 4x2+-11x+-3=0 | | 5f-8=12(+8) | | -3(7k+8)-12=5+10(k-1) | | 6.95+5.25x=40 | | 3x^2-7=-2x+1 | | w+10=10-3w | | 66=9y+3 | | 2(8x-10)+7(x+5)=-59 | | n+3+10n=7(1+3n)+2(-5n-4) | | -4.1=7.1+u/7 | | -7x+6(-3x+8)=-77 | | 7(w-5)-7=-6(-3w+4)-3w | | 2(2x-6)=7x+x | | 56x-30=82 | | -7x-4(4x-4)=-99 |